Domes made of two dimensional crystals: magneto- and quantum-optical properties

Antonio Polimeni

Dipartimento di Fisica

SAPIENZA Università di Roma

Acknowledgements I

Prof. Antonio Polimeni Prof. Marco Felici Elena Blundo Antonio Miriametro Marzia Cuccu Federico Tuzi Eirini Parmenopoulou Djeero Peters

Acknowledgements II

Elena Blundo

Marco Felici, Marzia Cuccu Salvatore Cianci, Federico Tuzi Antonio Miriametro

Physics Department, Sapienza University of Rome, Italy

Giorgio Pettinari

Institute of Photonics and Nanotechnologies, National Research Council, Roma, Italy

This project was funded within the QuantERA II Programme that has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101017733"

Acknowledgements II

Elena Blundo

Marco Felici, Marzia Cuccu Salvatore Cianci, Federico Tuzi Antonio Miriametro

Physics Department, Sapienza University of Rome, Italy

Cinzia Di Giorgio Fabrizio Bobba

Tanju Yildrim

■立研究開発法人物質・材料研究機構 National Institute for Materials Science

Yureui Lu Boqing Liu

Katarzyna Olkowska-Pucko Tomasz Kazimierczuk Adam Babiński Maciej Molas

Institute of Photonics and Nanotechnologies, National Research Council, Roma, Italy

Physics Department, University of Salerno, Fisciano, Italy

Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Tsukuba, Japan

Research School of Engineering and College of Engineering and Computer Science, Canberra, Australia

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland

• Strain in 2D crystals

• Formation, characteristics and control of artificial domes in exfoliable materials

 Strain fields in curved membranes: optical, vibrational and magneto-optical properties

Applications for site-controlled quantum light sources

Two-dimensional crystals

 MX_2

M: Mo, W

X: S, Se, Te

TMDs

hBN

Why strain?

Why strain?

Quantum Technologies

Straining methods

Hydrogen irradiation of bulk TMDs

J. Felton, E. Blundo et al., Molecules 25, 2526 (2020)

Hydrogen irradiation of bulk TMDs

J. Felton, E. Blundo et al., Molecules 25, 2526 (2020)

Domes in TMDs

D. Tedeschi. E. Blundo et al., Adv. Mat. 31, 1903795 (2019)

Domes in TMDs: Size

Three orders of magnitude variation in size is possible

Evidence of H₂ molecules within the domes

$d_{\rm H}$ =8×10¹⁶ protons/cm²

Domes in TMDs: Main features

Durability > 3 yrs

E. Blundo et al., Nano Lett. 22, 1525 (2022)

Domes in TMDs: Main features

Durability > 3 yrs

Robustness

C. Di Giorgio et al., ACS Appl. Mater. Interfaces 13, 48228 (2021)

Domes in TMDs: Main features

Durability > 3 yrs

Robustness

Regular/ reproducible shape

Strain field

Micro-Raman measurements – MoS₂

Micro-Raman measurements – MoS₂

Micro-PL mapping of WS₂ domes

E. Blundo et al., Phys. Rev. Res. 2, 012024 (2020)

Micro-PL mapping of WS₂ domes

E. Blundo et al., Phys. Rev. Res. 2, 012024 (2020)

Creation of highly efficient anular regions

10 µm

Micro-PL mapping of WS₂ domes

E. Blundo et al., Phys. Rev. Res. 2, 012024 (2020)

Science in High Magnetic Fields

Proposal for magnet time at the High Field Magnet Laboratory (up to 30 T). PI: A. Polimeni Proposal for magnet time (ISABEL) at the **Regional Partner 'University of Warsaw' (up to 12 T).** PI: E. Blundo

RSZAWSK

Exciton B

 4.0 ± 1

Stier et al., Nat. Commun. 7, 10643 (2016)

*g*_{A(I)} should not change with strain Theory-wise *A* and *I* excitons should show very different splittings^{E.B}

E. Blundo et al., Phys. Rev. Lett. 129, 067402 (2022)

E. Blundo et al., Phys. Rev. Lett. 129, 067402 (2022)

Controlled dome formation

E. Blundo et al., Adv. Mat. Interfaces 7, 2000621 (2020)

Space-controlled emitters?

10 μm

10 μm

How to circumvent H₂ liquefaction?

capped domes do not deflate

bare MoS₂ dome

hBN-capped MoS₂ dome

QUANTERA ERA-NET Cofund in Quantum Technologies

Space-controlled quantum emitters

ERA-NET Cofund in Quantum Technologies

FA

Space-controlled quantum emitters

Like for WSe_2 quantum emitters, the large g value indicates the involvements of an electron in a defect state and a hole in the valence band

QUANTERA ERA-NET Cofund in Quantum Technologies

 $\Delta E_{\rm Z} = g_{\rm exc} \, \mu_{\rm B} \, B$

Conclusions

 Durable, spatially controlled domes can be created in TMDs and hBN

- The domes host complex strain field and act as efficient light emitters
- Complex strain fields give access to exciton hybridization $\begin{pmatrix} y \\ y \\ -200 \\ -400 \\ y \\ -400 \\ -400 \\ y \\ -800$

 Applications for site-controlled quantum light sources

290 nm

 A_{1g}

Distance from centre

410

400 ______

390 390

380

370

15 Mm

exc

exc

Е.

Engineered

15 µm

(a)

A exc.