HNL020R, HNL020L, HNL050R, HNL050L

Red HeNe Laser System

User Guide
Table of Contents

Chapter 1 Safety .. 3

1.1. Safety Information ... 3
 1.1.1. Safety Summary .. 3
 1.1.2. Safety Information .. 3

1.2. Safety Instructions ... 5

Chapter 2 Description ... 7

2.1.1. Laser Head .. 7
2.1.2. Laser Power Supply .. 7
2.1.3. HeNe Laser Overview ... 8
 HeNe Applications .. 8
2.1.4. HeNe Linewidth ... 8
2.1.5. HeNe Polarization .. 10

Chapter 3 Setup .. 11

3.1. Unpacking ... 11
 3.1.1. Shipping Inventory .. 11

3.2. Mounting the Laser Head ... 12

3.3. Assembly ... 12

Chapter 4 Operation ... 13

4.1. HeNe Power Supply .. 13
 4.1.1. Introduction .. 13
 4.1.2. Remote Interlock Operation ... 13
 4.1.3. Maintenance and Service .. 14

Chapter 5 Troubleshooting .. 15

5.1. Technical Failures ... 15

5.2. Application Trouble Shooting .. 15
 5.2.1. Noise, Oscillations, and Fluctuation Sources .. 16

Chapter 6 Specifications ... 17

Chapter 7 Mechanical Drawing .. 19

Chapter 8 Regulatory .. 21

8.3. Compliance ... 22

Chapter 9 Thorlabs Worldwide Contacts .. 23
1.1. Safety Information

1.1.1. Safety Summary

As defined by the Federal Register 21 CFR 1040.10 Laser Safety Standard, Thorlabs’ Helium Neon laser heads are classified according to output power and wavelength. In compliance with this standard, certain performance features and laser safety labels are provided on the product.

Copies may be obtained from:

A.N.S.I. Washington, DC. Headquarters
1819 L Street, NW (between 18th and 19th Streets), 6th floor
Washington, DC 20036
Tel: (202) 293-8020
Fax: (202) 298-9287
www.ansi.org

Laser Institute of America
13501 Ingenuity Drive, Suite 128
Orlando, FL 32826
Toll Free: (800) 345-2737
Telephone: (407) 380-1553
Fax: (407) 380-5588
www.laserinstitute.org

1.1.2. Safety Information

Classification

These laser heads do not connect directly to the mains, they are considered Installation Category Type I. The included power supplies do connect directly to the mains, they are considered Installation Category Type II.

The power supply provides protective earthing as one of the means of shock protection. The following symbol is used to indicate a protective conductor terminal inside the unit.

Disconnecting from Line Power

The power supply power cord must always be accessible from the AC line-power source (receptacle). If the unit is installed in a cabinet, the operator must be able to disconnect the unit from the line power by the system’s line-power switch.
Power Supply Line Power Requirements

The unit can operate from any single-phase AC power source that supplies 120 (no dash), 230 (-EC), or 100 (-JP) VAC at a frequency range of 50 to 60 Hz. It draws 0.6 A maximum. The maximum power consumption is dependent on the configuration of each system.

Laser Safety Parameters

The parameters for the laser system are outlined in the table below, followed by classification warning labels. See specification tables for classifications specified by the Center for Devices and Radiological Health (CDRH), a division of the Food and Drug Administration (FDA).

<table>
<thead>
<tr>
<th>Item #</th>
<th>HNL020R(L)</th>
<th>HNL050R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>633 nm</td>
<td>633 nm</td>
</tr>
<tr>
<td>Laser Classification</td>
<td>Class IIIa (CDRH)/3R (IEC)</td>
<td>Class IIIb (CDRH)/3B (IEC)</td>
</tr>
<tr>
<td>Min Output Power</td>
<td>2.0 mW</td>
<td>5.0 mW</td>
</tr>
<tr>
<td>Beam Diameter (TEM00, 1/e^2 points ±3%)</td>
<td>Ø0.63 mm</td>
<td>Ø0.81 mm</td>
</tr>
</tbody>
</table>

DANGER
LASER RADIATION
AVOID EXPOSURE TO BEAM
CLASS IIIa LASER PRODUCT (CDRH)
CLASS 3R LASER PRODUCT
WAVELENGTH 633 nm
MAXIMUM POWER <4 mW
IEC60825-1:2007 ed2.0

DANGER
LASER RADIATION
AVOID EXPOSURE TO BEAM
CLASS IIIb LASER PRODUCT (CDRH)
CLASS 3B LASER PRODUCT
WAVELENGTH 633 nm
MAXIMUM POWER <35 mW
IEC60825-1:2007 ed2.0
1.2. Safety Instructions

WARNING

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure. Avoid unnecessary exposure to laser or collateral radiation that exceeds the acceptable emission limits listed in the safety regulation guidelines 21 CFR Subchapter J 1040.10 and 1040.11. This federal regulation is administered by the National Center for Devices and Radiological Health under the Food and Drug Administration.

The following safety instructions must be observed whenever the unit is operated, serviced, or repaired. Failure to comply with any of these instructions or with any precaution or warning contained in the user's manual is in direct violation of the standards of design, manufacture, and intended use of the unit. Thorlabs' assumes no liability for the customer's failure to comply with any of these safety requirements.

Before Initializing and Operating the Unit

- Inspect the unit for any signs of damage, and read the user's guide thoroughly.
- Install the unit as specified in the Setup section on page 11.
- Ensure that the unit and any devices or cords connected to it are properly grounded.

Laser Safety Precautions

It is recommended that all persons who use or are near lasers be aware of the potential hazards.

Warning

The starting and operating voltages of the laser head are lethal and are specified herein. Ensure that the power supply is turned off and unplugged before attempting to connect or disconnect the lasers.

Do not access the interior of the power supply. The lasers and the power supplies are not serviceable units.
Warning

To avoid the risk of injury or death, always observe the following precautions before initializing the unit:

- Never look into the end of an optical cable connected to an optical output device that is operating. Laser radiation is invisible, and direct exposure can severely injure the human eye.

- Eye and skin exposure to direct or scattered laser radiation is hazardous and is considered potentially extremely harmful.

- Install the laser in an enclosed area with access restricted to trained personnel. Clearly label the area and mark the entrance with the class of laser (Class II, IIIa, or IIIb).

- Never leave the laser on and unattended.

- If the laser has a key switch on the power supply front panel, the key must be inserted and turned to enable the laser to operate. The key is captive in the operational position. Remove the key from the laser when not in use or unattended. Store the key in a safe place.

- Limit access to the laser to personnel who are familiar with the equipment. Ensure that the laser is not assembled, operated, or repaired by inexperienced or untrained personnel.

- Ensure that all mirrors and optics used are securely positioned and fixed to prevent movement. Prevent stray reflections from surfaces at all times.

- Do not allow reflective objects to be placed in the laser beam. Laser light scattered from a reflective surface can be as damaging as the original beam. Objects such as rings, watch bands, and metal pens or pencils can be hazardous.

- Install the laser so that the laser beam is not at eye level.

- Terminate the laser beam path with a suitable power meter or non-reflecting beam stop. Enclose beam stops where possible. Consult a power meter or the beam stop manufacturers’ operating manual for proper usage.

- Suitable eye protection must be worn at all times when laser output is possible.

- Connect the power cord only to a power outlet equipped with a protective earth contact. Never connect to an extension cord that is not equipped with this feature.

- Do not interrupt the protective earth grounding. Any such action can lead to a potential shock hazard that can result in serious personal injury.

- Disconnect the power cord from the unit before adding or removing any components. Do not rely on electrical safety devices or interlocks.

- Some electrical components within the products may maintain electrical charge even when unplugged.

- After unplugging products from the ac mains, wait a minimum of 1 minute before disconnecting the laser head from the power supply. The emission indicator on the power supply should be off.

- WARNING: When disconnecting a laser head from a power supply there may be a residual charge remaining within the laser head and present at the exposed tips of the HV connector. Release any excess charge by shorting the tips of the connector to a metal surface before additional handling.

- Do not use the unit outdoors. To prevent potential fire or shock hazard, do not expose the unit to any source of excessive moisture.

- Operating the unit in the presence of flammable gases or fumes is extremely hazardous.

- Never remove covers or panels from the units.

- Do not perform any operating or maintenance procedure that is not described in the user’s manual.
Chapter 2 Description

Thorlabs' line of cylindrical, mid-power, red (632.8 nm) helium-neon (HeNe) gas lasers have stable output powers from 2.0 to 5.0 mW and a fundamental Gaussian beam. Depending on the model chosen, the output beam will be either linearly polarized or randomly polarized (unpolarized). The state of polarization in a randomly polarized laser beam is not truly an unpolarized source, but rather a single state of polarization that changes on a small timescale.

2.1.1. Laser Head

This laser head comes equipped with a manual shutter installed in the front bezel of the laser housing (see Figure 1 below). The front bezel has four 4-40 UNC holes to secure the optional accessory mounting ring and other industry standard HeNe accessories. This laser also comes with a 6 ft long, high-voltage cable for connecting to the power supply. This particular laser head is designed to operate at an optimum performance level when used with the required Thorlabs power supply.

2.1.2. Laser Power Supply

The laser includes a power supply that is specially designed to be used with the HeNe laser and is CE-certified. The power supply is enclosed in a protective housing and is CDRH compliant with a built-in 3 to 5 second time delay, an Alden high-voltage connector (see Figure 2 below), a key lock switch with two removable keys, a power on indicator\(^1\), and a remote interlock connector. The power supply comes configured for one of three local mains voltage: 120 VAC (no dash), 230 VAC (-EC), or 100 VAC (-JP).

\(^1\) The “Laser On” indicator will come on when the key is turned on. It does not indicate the laser is on, lasing, or the power supply is working. It only indicates that there may be power going to the laser head.
2.1.3. HeNe Laser Overview

A helium-neon laser, typically called a HeNe laser, is a small gas laser with many industrial and scientific uses. The primary wavelength they are used at is 632.8 nm, in the red portion of the visible spectrum.

The gain medium of the laser is a mixture of helium and neon gases in a 5:1 to 20:1 ratio that is contained at low pressure in a sealed glass tube. The excitation source for these lasers is a high-voltage electrical discharge through an anode and cathode at each end of the glass tube. The optical cavity of the laser consists of a flat, high-reflecting mirror at one end of the laser tube and an output coupler mirror with approximately 1% transmission at the other end.

<table>
<thead>
<tr>
<th>HeNe Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Metrology</td>
</tr>
<tr>
<td>• Cleanroom Monitoring Equipment</td>
</tr>
<tr>
<td>• Food Sorting</td>
</tr>
<tr>
<td>• Flow Cytometry</td>
</tr>
<tr>
<td>• Confocal Microscopy</td>
</tr>
<tr>
<td>• Imaging and Medical Equipment</td>
</tr>
<tr>
<td>• Opacity Monitoring</td>
</tr>
<tr>
<td>• Alignment</td>
</tr>
<tr>
<td>• Maritime Visual Guidance Systems</td>
</tr>
</tbody>
</table>

HeNe lasers tend to be small, with cavity lengths of around 15 cm up to 0.5 m and optical output powers ranging from 1 mW to 100 mW. Thorlabs offers output powers up to 22.5 mW.

2.1.4. HeNe Linewidth

A red HeNe laser wavelength is 632.816 nm in air, though it is often reported as either 632 nm or 633 nm. The wavelength gain curve is actually made of several longitudinal modes that fluctuate within the range due to thermal expansion of the cavity and other external factors.

The linewidth of a HeNe laser is specific to the application. The axial mode structure of the HeNe laser is characterized by the number of modes, the free spectral range (FSR), and the Doppler width (see Figure 2 on page 7). The linewidth of individual axial modes is usually small (∼kHz) and is primarily determined by external factors and measurement timescales rather than fundamental laser parameters. In most interferometric applications, the most relevant parameter is the coherence length, which is determined by the axial modes that are furthest apart. For a red HeNe laser, the coherence length is approximately 30 cm.
The laser process in a HeNe laser starts with the collision of electrons from the electrical discharge with the helium atoms in the gas. This excites helium from the ground state to a long-lived, metastable excited state. Collision of excited helium atoms with ground-state neon atoms results in excited neon electrons. The number of neon atoms entering the excited states builds up until population inversion is achieved. Spontaneous and stimulated emission between the states results in emission of 632.82 nm light along with other emission wavelengths. From these states, the electrons quickly decay to the ground state. The HeNe laser's power output is limited because the neon upper level saturates with higher current, while the lower level varies linearly with current.
The laser cavity can be designed with the correct mirrors and length to promote other wavelengths of laser emission. There are infrared transitions at 3.39 μm and 1.15 μm wavelengths, and a variety of visible transitions, including a green (543.365 nm, sometimes called GreeNe laser), a yellow (593.932 nm), a yellow-orange (604.613 nm), and an orange (611.802 nm) transition. The typical red, 633 nm wavelength output of a HeNe laser actually has a much lower gain compared to other wavelengths, such as the 1.15 μm and 3.39 μm lines.

2.1.5. HeNe Polarization

Unpolarized (Randomly Polarized) Beam

The output of an unpolarized HeNe laser consists of a rapidly fluctuating, linearly polarized beam whose polarization orientation changes on a nanosecond time scale. Unpolarized lasers are ideal for applications where there are no polarizing elements in the beam path. Depending on the time scale of an application, large power fluctuations are possible.

Linear Polarized Beam

The state of polarization in a polarized HeNe laser beam is linear, making these lasers ideal for polarization-sensitive applications.
Chapter 3 Setup

3.1. Unpacking

Inspect the packing container for any damage that may have occurred during shipment. Contact your local Thorlabs customer service office for assistance. Packing materials are specifically designed to protect against shipping damage. Please keep this container and reuse it if your system needs to be returned to Thorlabs for service or evaluation.

Carefully remove the laser system from the packing container. Inspect for damage, including dents and scratches. There should not be anything rattling around inside the laser head. Rarely, during shipping, the glass tube may break.

3.1.1. Shipping Inventory

The equipment included in this shipment should match the packing slip attached to the box. Verify that the correct product was shipped to you by identifying the item number on the box. If the shipment is incomplete, or if an incorrect item was shipped to you, please notify Thorlabs immediately.

This package should contain:

- Cylindrical Laser Head
- Power Supply
- 2 Keys for Power Supply
- Remote Interlock for Power Supply
- User Guide and Quick Start Guide

![Laser System Diagram]
3.2. Mounting the Laser Head

The cylindrical construction of the laser head allows for easy mounting in ring clamps, V-blocks, or similar mounting hardware without affecting the laser's alignment. Use caution when clamping onto the laser, as too much pressure can damage the aluminum housing or cause misalignment. The front bezel has four 4-40 UNC holes to secure standard HeNe optional accessories. The laser head should always be secured in place and not allowed to move freely. Not only can the laser roll off the work surface and break, but the laser emission can be a health hazard.

See the table below for the recommended number of mounting points. It is recommended to use V-block mounts (see figure to the right). Thorlabs offers fixed and kinematic mounts.

<table>
<thead>
<tr>
<th>HeNe Laser Length</th>
<th>Number of V-block Mounts</th>
<th>Number of Ring Clamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 – 16"</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16"+</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3.3. Assembly

It is suggested that the HeNe Laser Quick Start Guide (a separate document found enclosed with the laser) be used to assemble the laser system. Listed below are the steps needed to assemble the laser system.

This laser system includes a fixed-voltage power supply that is factor-set for either 120 (no dash), 230 (-EC), or 100 VAC (-JP) operation. The laser must be purchased correctly configured for the appropriate regional current. The proper mains voltage cord must also be used.

WARNING

Never remove the Alden plug from the power supply while the power supply is plugged into the mains. Doing so may result in arcing that could damage the laser head or power supply.

1) Make sure the laser head is secured to your work surface and pointed safely away from people and directed into a beam block, beam dump or similar nonreflective surface.

2) Plug the high-voltage cable from the laser into the rear of the power supply. Confirm that the Alden plug is well-seated. The first few times the plug is inserted, it may require more force than expected. Failure to plug the connector all the way in can result in the laser failing to lase or arcing and damage to the power supply or laser head.

3) Insert the shorting remote interlock connector into the back of the power supply. Note that the plug only goes in one way. Also note that the LED light on the front of the power supply will light even if the interlock is not inserted.

4) Plug the AC connector into the mains outlet.

5) Insert the key into the front panel of the power supply.
Chapter 4 Operation

To operate the laser system, follow the following procedures:

1) Make sure that the laser is pointing safely away from people and is securely mounted and directed into a beam block, beam dump or similar nonreflective surface.

2) Open the aperture by turning the screw 90° in either direction using a flat head screwdriver.

3) Turn the key switch on the power supply on. The “Laser On” LED indicator will light. **Note:** There is a 3 to 5 second CDRH safety delay before the voltage turns on.

4.1. HeNe Power Supply

4.1.1. Introduction

The HeNe power supply is a turn-key power supply for HeNe laser tubes that incorporates all of the appropriate safety features required by US federal regulations. **Note that the power supply that came with your HeNe laser is specifically designed to be used with that model of HeNe lasers and is not compatible with other HeNe laser models.**

This unit is RoHS compliant.

4.1.2. Remote Interlock Operation

To use the remote interlock connector, the metal pin needs to be removed, the top of plug taken out and the shorting conductor from the connector removed. The connector may then be wired into the user’s interlock system. The interlock is at AC line potential and proper care must be taken to use the correct wire gauges, insulation types, etc.

The voltage on this connector is the same as the AC line voltage of your pre-configured power supply. Only the provided connector should be used as an interlock and never anything else. Please contact your local tech support office for a replacement connector.

WARNING

Use of controls, adjustments, or performance of procedures, other than those specified herein, may result in hazardous radiation exposure.
4.1.3. Maintenance and Service

The power supply contains no user-serviceable parts. Return the power supply to Thorlabs for service.
Chapter 5 Troubleshooting

5.1. Technical Failures

<table>
<thead>
<tr>
<th>Problem</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>No light is being emanating from the laser.</td>
<td>Make sure that the aperture is open.</td>
</tr>
<tr>
<td></td>
<td>Check to make sure that</td>
</tr>
<tr>
<td></td>
<td>• the Alden plug is firmly seated into the power supply (it may</td>
</tr>
<tr>
<td></td>
<td>take more force to push the plug in all the way the first few</td>
</tr>
<tr>
<td></td>
<td>times),</td>
</tr>
<tr>
<td></td>
<td>• the interlock connector is plugged in and fully seated,</td>
</tr>
<tr>
<td></td>
<td>• the power supply is plugged into a working outlet, and</td>
</tr>
<tr>
<td></td>
<td>• the aperture is open.</td>
</tr>
<tr>
<td>Note: There is a built in CDRH safety delay</td>
<td></td>
</tr>
<tr>
<td>4 - 5 seconds before the laser starts to</td>
<td></td>
</tr>
<tr>
<td>lase after turning the key switch.</td>
<td></td>
</tr>
<tr>
<td>The laser does not work and there is</td>
<td>The glass gas tube may have broken during shipping. Please contact</td>
</tr>
<tr>
<td>something rattling around inside the laser</td>
<td>your local tech support office for help.</td>
</tr>
<tr>
<td>head tube.</td>
<td></td>
</tr>
<tr>
<td>The power supply does not turn on. The</td>
<td>Make sure the power supply is plugged in.</td>
</tr>
<tr>
<td>power supply Laser On indicator does not</td>
<td></td>
</tr>
<tr>
<td>light.</td>
<td></td>
</tr>
<tr>
<td>The laser has low output power.</td>
<td>The laser requires 10 minutes to meet published specifications. Make</td>
</tr>
<tr>
<td></td>
<td>sure to let it warm up.</td>
</tr>
<tr>
<td></td>
<td>Make sure that the laser is mounted correctly. See page 12 for</td>
</tr>
<tr>
<td></td>
<td>proper mounting techniques.</td>
</tr>
</tbody>
</table>

5.2. Application Trouble Shooting

Some sources of trouble of a HeNe laser do not come from the laser failing or being out of spec. In some cases, these laser are not suited to the application. One common mis-application comes from a HeNe laser, especially a low power laser (~0.5 mW), being used in a metrology application.

Environment is an important consideration as well. Dirty environments can cause the optics to become contaminated and the power output to drop below expected levels. Unstable output beams can be caused by noisy environments with large sources of vibrations. Proper mounting on an optical table can reduce the effects of ambient vibrations. Temperature is also a factor. If the environment where the laser is being used fluctuates in temperature, the output power can experience a large amplitude change. Even blowing on the laser tube can cause the output power to fluctuate significantly.

Randomly polarized lasers are actually rapidly changing, single polarization lasers. When averaged over time, the light emitted from these lasers appears randomly polarized. However, any polarization optics in the path (intentional or unintentional) can cause large variations in the output power. Only polarized lasers should be used in applications that involve polarization optics.

While HeNe lasers are less sensitive to variations caused by back reflections, they are not immune to them. Large retro-reflections back into the laser can cause unpredictable power changes. A free-space isolator can be used to reduce or eliminate these effects. If possible, only a small angular deviation is needed to eliminate the back reflections.

These HeNe lasers are ill suited to any application or experiment where a single frequency or long coherence length is required.
5.2.1. Noise, Oscillations, and Fluctuation Sources

There are many sources of noise, oscillations and fluctuations of the output of a HeNe laser. One of the most common is from longitudinal modes drifting into and out of the gain curve. The frequency of these fluctuations vary from less than a Hz to as high as several kHz, depending on the stability of the environment.

Other, more constant sources of fluctuations are from the following (with corresponding frequencies):

- Line Noise from AC High-Voltage Power Supplies (50/60 Hz, 100/120 Hz, etc.)
- Switching Noise from DC High-Voltage Power Supplies (40 kHz)
- Plasma Oscillation (Tens of MHz)
- Transverse Mode Beat Notes (Hundreds of MHz)
- Axial Mode Beats (at FSR, Hundreds of MHz)
Chapter 6 Specifications

<table>
<thead>
<tr>
<th>Item #</th>
<th>HNL020R</th>
<th>HNL020L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>632.8 nm</td>
<td></td>
</tr>
<tr>
<td>Min Output Power (TEM_{00}, 633 nm)</td>
<td>2.0 mW</td>
<td></td>
</tr>
<tr>
<td>Min Polarization Ratio</td>
<td>Random</td>
<td>500:1</td>
</tr>
<tr>
<td>Beam Diameter (TEM_{00}, 1/e^2 points + 3%)</td>
<td>0.63 mm</td>
<td></td>
</tr>
<tr>
<td>Beam Divergence (TEM_{00}, + 3%)</td>
<td>1.3 mrad</td>
<td></td>
</tr>
<tr>
<td>Mode Purity (TEM_{00})</td>
<td>>95%</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Mode Spacing</td>
<td>730 MHz</td>
<td></td>
</tr>
<tr>
<td>Max Noise (RMS) (30 Hz to 10 MHz)</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>Max Drift with Respect to Mean Power, Over 8 hr</td>
<td>±2.5%</td>
<td></td>
</tr>
<tr>
<td>Max Mode Sweeping Contribution</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Beam Pointing Stability (25 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Cold Start</td>
<td><0.10 mrad</td>
<td></td>
</tr>
<tr>
<td>After 15 min Warm-up</td>
<td><0.02 mrad</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage (±100 V)</td>
<td>1800 VDC</td>
<td></td>
</tr>
<tr>
<td>Operating Current (±0.1 mA)</td>
<td>6.5 mA</td>
<td></td>
</tr>
<tr>
<td>Max Starting Voltage</td>
<td>10 kVDC</td>
<td></td>
</tr>
</tbody>
</table>

Physical/Mechanical Characteristics

<table>
<thead>
<tr>
<th>Physical/Mechanical Characteristics</th>
<th>HNL020R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Warm-up Time (95% power)</td>
<td>10 min</td>
</tr>
<tr>
<td>Expected Operating Lifetime</td>
<td>>30,000 hr</td>
</tr>
<tr>
<td>Storage Lifetime</td>
<td>Indefinite (Hard-Sealed)</td>
</tr>
<tr>
<td>Static Alignment</td>
<td>Center to Outer Cylinder within ±0.01", Parallel to outer Cylinder within ±1 mR</td>
</tr>
<tr>
<td>Laser Head Weight</td>
<td>0.92 lbs (0.42 kg)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Environmental</th>
<th>HNL020R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, Operating</td>
<td>-40 to 70 °C</td>
</tr>
<tr>
<td>Temperature, Non-operating</td>
<td>-40 to 150 °C</td>
</tr>
<tr>
<td>Altitude, Operating</td>
<td>0 to 10,000 ft</td>
</tr>
<tr>
<td>Altitude, Non-Operating</td>
<td>0 to 70,000 ft</td>
</tr>
<tr>
<td>Relative Humidity (non-condensing)</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Shock</td>
<td>25 g for 11 ms, 100 g for 1 ms</td>
</tr>
</tbody>
</table>

Safety

<table>
<thead>
<tr>
<th>Safety</th>
<th>HNL020R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRH/IEC 60825-1 Class</td>
<td>IIIa/3R</td>
</tr>
</tbody>
</table>

2 TEM_{00} version only.
<table>
<thead>
<tr>
<th>Item #</th>
<th>HNL050R</th>
<th>HNL050L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>632.8 nm</td>
<td></td>
</tr>
<tr>
<td>Min Output Power (TEM\textsubscript{00}, 633 nm)</td>
<td>5.0 mW</td>
<td></td>
</tr>
<tr>
<td>Min Polarization Ratio</td>
<td>Random</td>
<td>500:1</td>
</tr>
<tr>
<td>Beam Diameter (TEM\textsubscript{00}, 1/e^2 points + 3%)</td>
<td>0.81 mm</td>
<td></td>
</tr>
<tr>
<td>Beam Divergence (TEM\textsubscript{00}, + 3%)</td>
<td>1.0 mrad</td>
<td></td>
</tr>
<tr>
<td>Mode Purity (TEM\textsubscript{00})</td>
<td>>95%</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Mode Spacing</td>
<td>435 MHz</td>
<td></td>
</tr>
<tr>
<td>Max Noise (RMS) (30 Hz to 10 MHz)3</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Max Drift with Respect to Mean Power, Over 8 hr</td>
<td>±2.5%</td>
<td></td>
</tr>
<tr>
<td>Max Mode Sweeping Contribution</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Beam Pointing Stability (25 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Cold Start</td>
<td><0.10 mrad</td>
<td></td>
</tr>
<tr>
<td>After 15 min Warm-up</td>
<td><0.02 mrad</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage (±100 V)</td>
<td>2300 VDC</td>
<td></td>
</tr>
<tr>
<td>Operating Current (±0.1 mA)</td>
<td>6.0 mA</td>
<td></td>
</tr>
<tr>
<td>Max Starting Voltage</td>
<td>10 kVDC</td>
<td></td>
</tr>
</tbody>
</table>

Physical/Mechanical Characteristics

<table>
<thead>
<tr>
<th>Physical/Mechanical Characteristics</th>
<th>HNL050R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Warm-up Time (95% power)</td>
<td>10 min</td>
</tr>
<tr>
<td>Expected Operating Lifetime</td>
<td>>40,000 hr</td>
</tr>
<tr>
<td>Storage Lifetime</td>
<td>Indefinite (Hard-Sealed)</td>
</tr>
<tr>
<td>Static Alignment</td>
<td>Center to Outer Cylinder within ±0.01", Parallel to outer Cylinder within ±1 mR</td>
</tr>
<tr>
<td>Laser Head Weight</td>
<td>1.3 lbs (0.59 kg)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Environmental</th>
<th>HNL050R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, Operating</td>
<td>-40 to 70 °C</td>
</tr>
<tr>
<td>Temperature, Non-operating</td>
<td>-40 to 150 °C</td>
</tr>
<tr>
<td>Altitude, Operating</td>
<td>0 to 10,000 ft</td>
</tr>
<tr>
<td>Altitude, Non-Operating</td>
<td>0 to 70,000 ft</td>
</tr>
<tr>
<td>Relative Humidity (non-condensing)</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Shock</td>
<td>25 g for 11 ms, 100 g for 1 ms</td>
</tr>
</tbody>
</table>

Safety

<table>
<thead>
<tr>
<th>Safety</th>
<th>HNL050R(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRH/IEC 60825-1 Class</td>
<td>IIIb/3B</td>
</tr>
</tbody>
</table>

3 TEM\textsubscript{00} version only.
Figure 7 HNL020 Dimensional Drawing
Figure 8 HNL050 Dimensional Drawing
Chapter 8 Regulatory

As required by the WEEE (Waste Electrical and Electronic Equipment Directive) of the European Community and the corresponding national laws, Thorlabs offers all end users in the EC the possibility to return “end of life” units without incurring disposal charges.

- This offer is valid for Thorlabs electrical and electronic equipment:
 - Sold after August 13, 2005
 - Marked correspondingly with the crossed out “wheelie bin” logo (see right)
 - Sold to a company or institute within the EC
 - Currently owned by a company or institute within the EC
 - Still complete, not disassembled and not contaminated

As the WEEE directive applies to self-contained operational electrical and electronic products, this end of life take back service does not refer to other Thorlabs products, such as:

- Pure OEM products, that means assemblies to be built into a unit by the user (e. g. OEM laser driver cards)
- Components
- Mechanics and optics
- Left over parts of units disassembled by the user (PCB’s, housings etc.).

If you wish to return a Thorlabs unit for waste recovery, please contact Thorlabs or your nearest dealer for further information.

8.1. Waste Treatment is Your Own Responsibility

If you do not return an “end of life” unit to Thorlabs, you must hand it to a company specialized in waste recovery. Do not dispose of the unit in a litter bin or at a public waste disposal site.

8.2. Ecological Background

It is well known that WEEE pollutes the environment by releasing toxic products during decomposition. The aim of the European RoHS directive is to reduce the content of toxic substances in electronic products in the future.

The intent of the WEEE directive is to enforce the recycling of WEEE. A controlled recycling of end of life products will thereby avoid negative impacts on the environment.
8.3. Compliance

FDA-CDRH Compliance

Under the US FDA CDRH, the lasers conform to the Code of Federal Regulations (CFR), Title 21, Subchapter J, which pertains to laser safety and labeling. See www.fda.gov/cdrh/radhlth/cfr/21cfr1000-1050.pdf for more information.

If the end user integrates this equipment into another product, it is the customer's responsibility to ensure CDRH certification of their instrument.

CE Compliance

The HNL Series lasers comply with the following standards:

- IEC/EN 60825-1 Concerning Laser Safety
- IEC/EN 61010-1 Concerning Electrical Safety
- EN61326 Concerning EMC

The HNL Series power supplies comply with the following standards:

- IEC/EN 61010-1 Concerning Electrical Safety
- EN61326 Concerning EMC

Conditions of Acceptability

When installed in the end product, consideration shall be given to the following:

- A suitable fire enclosure shall be provided in the end product.
- Safety interlock switch, key switch, laser housing and laser beam attenuator in accordance with laser safety standards shall be provided in the end product.
- A visual or audio indicator, in accordance with laser safety standards, shall be provided in the end product.
- The unit's thermal circuitry shall be evaluated in the end product.
- Compliance with FDA or other laser safety standards shall be determined in the end-use application.
- The end user must provide his or her own safety monitoring mechanism to shut down a power supply if it fails to start the laser after several seconds.
- The end user must use laser power supplies that provide a protective earth ground wire connected to the mains ground. This wire must be able to support 25 A DC or AC RMS for one minute.
- The HNL Series require that the power supply high-voltage negative output be connected to earth ground.
Chapter 9 Thorlabs Worldwide Contacts

USA, Canada, and South America
Thorlabs, Inc.
435 Route 206
Newton, NJ 07860
USA
Tel: 973-579-7227
Fax: 973-300-3600
www.thorlabs.com
www.thorlabs.us (West Coast)
Email: sales@thorlabs.com
Support: techsupport@thorlabs.com

Europe
Thorlabs GmbH
Hans-Böckler-Str. 6
85221 Dachau
Germany
Tel: +49-(0)8131-5956-0
Fax: +49-(0)8131-5956-99
www.thorlabs.de
Email: europe@thorlabs.com

UK and Ireland
Thorlabs Ltd.
1 Saint Thomas Place, Ely
Cambridgeshire CB7 4EX
Great Britain
Tel: +44 (0)1353-654440
Fax: +44 (0)1353-654444
www.thorlabs.com
Email: sales.uk@thorlabs.com
Support: techsupport.uk@thorlabs.com

France
Thorlabs SAS
109, rue des Côtes
78600 Maisons-Laffitte
France
Tel: +33 (0) 970 444 844
Fax: +33 (0) 811 381 748
www.thorlabs.com
Email: sales.fr@thorlabs.com

Scandinavia
Thorlabs Sweden AB
Box 141 94
400 20 Göteborg
Sweden
Tel: +46-31-733-30-00
Fax: +46-31-703-40-45
www.thorlabs.com
Email: Scandinavia@thorlabs.com

Japan
Thorlabs Japan, Inc.
Higashi-Ikebukuro Q Building, 1F
2-23-2, Higashi-Ikebukuro,
Toshima-ku, Tokyo 170-0013
Japan
Tel: +81-3-5979-8889
Fax: +81-3-5979-7285
www.thorlabs.jp
Email: sales@thorlabs.jp

China
Thorlabs China
Oasis Middlering Centre
3 Building 712 Room
915 Zhen Bei Road
Shanghai
China
Tel: +86 (0)21-32513486
Fax: +86 (0)21-32513480
www.thorlabs.hk
Email: chinasales@thorlabs.com
1. Unpack the Laser and Power Supply

 a. Carefully unpack the laser head, and place it securely on your work surface. **DO NOT ALLOW THE TUBE TO ROLL freely.**
 b. Carefully unpack the power supply and set down near the laser head.
 c. Unpack and read ALL documentation **CAREFULLY!**

 What’s in the Box?
 1 Laser Head
 1 Power Supply
 1 Manual and Quick Start Guide
 1 Interlock Connector
 2 Keys

2. Make the Connections

 a. Plug the Alden plug into the power supply. Make sure the plug is pushed in all the way. The laser may not lase if the plug is not securely in place.
 b. Insert the interlock connector into the back of the power supply.
 c. Connect the AC cord to the powers supply.

3. Turn on the Laser

 a. Make sure the laser is pointing safely away from people towards a beam block or nonreflective surface and is securely mounted. See the manual for proper mounting options.
 b. Open the shutter by sliding the shutter switch to the left.
 c. Turn the key switch on the power supply on. Power light will light up red. There is a 4 to 5 sec CDRH safety delay before the power supply comes on.

If you are experiencing an issue, please refer to the troubleshooting section of the manual before contacting your local Tech Support Office.